Separation of Mixing Inequalities in a Mixed Integer Programming Solver
نویسندگان
چکیده
This paper shows how valid inequalities based on the mixing set can be used in a mixed integer programming (MIP) solver. It discusses the relation of mixing inequalities to flow path and mixed integer rounding inequalities and how currently used separation algorithms already generate cuts implicitly that can be seen as mixing cuts. Further on, it describes two new separation algorithms that generate mixing cuts from mixed integer paths explicitly. A section with computational results discusses the importance of mixing cuts based on paths for solving MIP problems and reports results for the described separation algorithms.
منابع مشابه
Generation of a reduced first - level mixed integer programmimg problem
We introduce a new way of generating cutting planes of a mixed integer programme by way of taking binary variables. Four binary variables are introduced to form quartic inequalities, which results in a reduced first-level mixed integer programme. A new way of weakening the inequalities is presented. An algorithm to carryout the separation of the inequalities, which are exponential in number, is...
متن کاملMixing mixed-integer inequalities
Mixed-integer rounding (MIR) inequalities play a central role in the development of strong cutting planes for mixed-integer programs. In this paper, we investigate how known MIR inequalities can be combined in order to generate new strong valid inequalities. Given a mixed-integer region S and a collection of valid \base" mixed-integer inequalities , we develop a procedure for generating new val...
متن کاملMixed n-step MIR inequalities: Facets for the n-mixing set
Günlük and Pochet [O. Günlük , Y. Pochet: Mixing mixed integer inequalities. Mathematical Programming 90(2001) 429-457] proposed a procedure to mix mixed integer rounding (MIR) inequalities. The mixed MIR inequalities define the convex hull of the mixing set {(y, . . . , y, v) ∈ Z × R+ : α1y + v ≥ βi, i = 1, . . . ,m} and can also be used to generate valid inequalities for general as well as se...
متن کامل9811 Mixing Mixed - Integer Inequalities
Mixed-integer rounding (MIR) inequalities play a central role in the development of strong cutting planes for mixed-integer programs. In this paper, we investigate how known MIR inequalities can be combined in order to generate new strong valid inequalities. Given a mixed-integer region S and a collection of valid “base” mixed-integer inequalities, we develop a procedure for generating new vali...
متن کاملA polyhedral study on chance constrained program with random right-hand side
The essential structure of the mixed–integer programming formulation for chance–constrained program (CCP) with stochastic right–hand side is the intersection of multiple mixing sets with a 0− 1 knapsack. To improve our computational capacity on CCP, an underlying substructure, the (single) mixing set with a 0 − 1 knapsack, has received substantial attentions recently. In this study, we first pr...
متن کامل